Activation of c-Jun N-terminal protein kinase is a common mechanism underlying paraquat- and rotenone-induced dopaminergic cell apoptosis.

نویسندگان

  • Heather Klintworth
  • Kathleen Newhouse
  • Tingting Li
  • Won-Seok Choi
  • Roland Faigle
  • Zhengui Xia
چکیده

Parkinson's disease (PD) is characterized by selective loss of dopaminergic neurons in the substantia nigra of the brain. Although the underlying causes are not well characterized, epidemiological studies suggest an elevated risk of PD with occupational pesticide exposure. Here, we utilized pheochromocytoma (PC) 12 and SH-SY5Y cells as well as rat primary cultured dopaminergic neurons to investigate mechanisms for dopaminergic cell death induced by paraquat and rotenone, pesticides that are used to model PD in rodents. Both paraquat and rotenone induce selective loss of dopaminergic neurons in primary cultures. We discovered that paraquat induces apoptosis in PC12 cells but not in SH-SY5Y cells, while rotenone exposure causes apoptosis in SH-SY5Y cells but not in PC12 cells. The selective ability of paraquat and rotenone to induce apoptosis in different cell lines correlates with their ability to activate c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinases. Furthermore, JNK and p38 are required for rotenone-induced apoptosis in SH-SY5Y cells (K. Newhouse et al., 2004, Toxicol. Sci. 79, 137-146) as well as primary neurons, and for paraquat-induced apoptosis in PC12 cells. However, JNK but not p38 plays a role in paraquat-induced loss of primary cultured dopaminergic neurons. Our data identify JNK activation as a common mechanism underlying dopaminergic cell death induced by both paraquat and rotenone in model cell lines and primary cultures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells.

Rotenone is a naturally derived pesticide that has recently been shown to evoke the behavioral and pathological symptoms of Parkinson's disease in animal models. Though rotenone is known to be an inhibitor of the mitochondrial complex I electron transport chain, little is known about downstream pathways leading to its toxicity. We used human dopaminergic SH-SY5Y cells to study mechanisms of rot...

متن کامل

Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation.

Paraquat, N-methyl-4-phenyl-1,2,3,6 tetrahydropyridine, and rotenone have been shown to reproduce several features of Parkinson's disease in animal and cell culture models. Although these chemicals are known to perturb dopamine homeostasis and induce dopaminergic cell death, their molecular mechanisms of action are not well defined. We have previously shown that paraquat does not require functi...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Activation of c-Jun N-terminal kinase is required for neurite outgrowth of dopaminergic neuronal cells.

Recent studies indicate that activation of stress-activated protein kinases may be implicated in a broad range of biological activities including differentiation. To directly examine whether stress-activated protein kinases are involved in neuronal differentiation, we utilized retinoic acid-induced and spontaneous models of neurite outgrowth in dopaminergic neurons. Here, we show that retinoic ...

متن کامل

Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function.

Hydrogen sulfide (H(2)S) has been proposed as a novel neuromodulator, which plays critical roles in the central nervous system affecting both neurons and glial cells. However, its relationship with neurodegenerative diseases is unexplored. The present study was undertaken to investigate the effects of H(2)S on cell injury induced by rotenone, a commonly used toxin in establishing in vivo and in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2007